A correlation for the lift - off of many particles in plane Poiseuille flows of Newtonian fluids

نویسنده

  • D. D. Joseph
چکیده

Choi & Joseph (2001) reported a two-dimensional numerical investigation of the lift-off of 300 circular particles in plane Poiseuille flows of Newtonian fluids. We perform similar simulations. Particles heavier than the fluid are initially placed in a closely packed ordered configuration at the bottom of a periodic channel. The fluid-particle mixture is driven by an external pressure gradient. The particles are suspended or fluidized by lift forces that balance the buoyant weight perpendicular to the flow. Pressure waves corresponding to the waves at the fluid-mixture interface are observed. During the initial transient, these waves grow, resulting in bed erosion. At sufficiently large shear Reynolds numbers the particles occupy the entire channel width during the transient. The particle bed eventually settles to an equilibrium height which increases as the shear Reynolds number is increased. Heavier particles are lifted to a smaller equilibrium height at the same Reynolds number. A correlation for the lift-off of many particles is obtained from the numerical data. The correlation is used to estimate the critical shear Reynolds number for lift-off of many particles. The critical shear Reynolds number for lift-off of a single particle is found to be greater than that for many particles. The procedures used here to obtain correlations from direct simulations in 2D and the type of correlations that emerge should generalize to 3D simulations presently underway. # Current address: Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lift forces on a cylindrical particle in plane Poiseuille flow of shear thinning fluids

Lift forces on a cylindrical particle in plane Poiseuille flow of shear thinning fluids are investigated by direct numerical simulation. Previous works on this topic for Newtonian fluids show that the two-dimensional channel can be divided into alternating regions defined by the stability of the particle’s equilibrium. We observe stability regions with the same pattern in flows of shear thinnin...

متن کامل

Numerical Simulation of Non-Newtonian Inelastic Flows in Channel based on Artificial Compressibility Method

In this study, inelastic constitutive modelling is considered for the simulation of shear-thinning fluids through a circular channel. Numerical solutions are presented for power-law inelastic model, considering axisymmetric Poiseuille flow through a channel. The numerical simulation of such fluid is performed by using the Galerkin finite element approach based on artificial compression method (...

متن کامل

Numerical Solution of Reacting Laminar Flow Heat and Mass Transfer in Ducts of Arbitrary Cross-Sections for Newtonian and Non-Newtonian Fluids

This study is concerned with the numerical analysis, formulation, programming and computation of steady, 3D conservation equations of reacting laminar flow heat and mass transfer in ducts of arbitrary cross-sections. The non-orthogonal boundary-fitted coordinate transformation method is applied to the Cartesian form of overall-continuity, momenta, energy and species-continuity equations, parabo...

متن کامل

Artifcial neural network approach for the prediction of terminal falling velocity of non-spherical particles through Newtonian and non-Newtonian fluids

The investigation of the terminal falling velocity of non-spherical particles is currently one of the most promising topics in sedimentation technology due to its great signifcance in many separation processes. In this study, the potential of Artifcial Neural Networks (ANNs) for the prediction of nonspherical particles terminal falling velocity through Newtonian and nonNewtonian (power law) liq...

متن کامل

Overview of Direct Numerical Simulation of Particle Entrainment in Turbulent Flows

An overview of removal and re-entrainment of particles in turbulent flows is presented. The procedure for the direct numerical simulation (DNS) of the Navier-Stokes equation via a pseudospectral method for simulating the instantaneous fluid velocity field is described. Particle removal mechanisms in turbulent flows in a duct are examined and effects of the near-wall coherent eddies on the parti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001